Optimal Escape Paths

Steven Finch

May 30, 2005
A summary of Bellman's "Lost in a Forest" problem appears in [1]. Certain allied constants are described in $[2,3]$ and research is ongoing $[4,5,6]$. We will focus on just one facet of the problem for now, namely the following:

A hiker is lost in a forest whose shape is known to be a half-plane. What is the best path for him to follow to escape from the forest?

This is equivalent to:
A swimmer is lost in a dense fog at sea, and she knows that the shore is a line. What is the best path for her to follow to search for the shore?

Since no information is available concerning the initial distance or orientation of the boundary, a candidate path must be unbounded. Baeza-Yates, Culberson \& Rawlins $[7,8,9]$ claimed that the best path (which minimizes the maximum escape time) is a logarithmic spiral. Their argument was based on symmetry; a proof via the calculus of variations is still sought after $[5,6]$.

Speed is constant, thus escape time is proportional to arclength. If we assume that a logarithmic spiral $r=e^{\kappa \theta}$ is indeed optimal, then straightforward analysis leads to the best value of the parameter κ. Let the initial (unknown) distance from the boundary be R. Then the min-max logarithmic spiral can be shown to have parameter

$$
\kappa=\tan \alpha=0.2124695594 \ldots=\ln (1.2367284662 \ldots)
$$

with arclength

$$
R \csc \alpha \sec \beta=(13.8111351795 \ldots) R
$$

where α, β satisfy the simultaneous equations

$$
\frac{1}{\tan \alpha}+\frac{1}{\tan \beta}=\frac{2 \pi-\alpha-\beta}{\cos ^{2} \alpha}, \quad \frac{\cos \alpha}{\cos \beta}=e^{(2 \pi-\alpha-\beta) \tan \alpha} .
$$

It is surprising that such interesting constants emerge here, yet frustrating that a gap in the proof (for such a simple forest/sea) should persist.

[^0]0.1. Growth of Squares. While on the subject of logarithmic spirals, it seems natural to continue a discussion begun in [10]. Let $f_{1}=1, f_{2}=1, f_{3}=2, \ldots$ denote the Fibonacci sequence and $\varphi=(1+\sqrt{5}) / 2$ denote the Golden mean. In the $x y$ plane, draw the 1×1 square with center ($1 / 2,1 / 2$), then the adjacent 1×1 square with center $(-1 / 2,1 / 2)$, then the adjacent 2×2 square with center $(0,-1)$, then the adjacent 3×3 square with center $(5 / 2,-1 / 2)$, then the adjacent 5×5 square with center ($3 / 2,7 / 2$), and so forth (in a counterclockwise manner). The $n^{\text {th }}$ square is $f_{n} \times f_{n}$ and shares an edge between the two squares preceding it. Supposing we now translate the origin to the point $(2 / 5,1 / 5)$, the logarithmic spiral $r=e^{\kappa \theta+\lambda}$ then asymptotically approaches the $f_{n} \times f_{n}$ square centers as $n \rightarrow \infty$, where [11]
\[

$$
\begin{gathered}
\kappa=\frac{2}{\pi} \ln (\varphi)=0.3063489625 \ldots \\
\lambda_{\text {center }}=\frac{1}{2} \ln \left(\frac{\varphi+1}{10}\right)-\arctan (3) \kappa=-1.0527245979 \ldots
\end{gathered}
$$
\]

In the squares just constructed, consider instead the leading vertices

$$
(0,1), \quad(-1,0), \quad(1,-2), \quad(4,1), \quad(-1,6), \quad \ldots
$$

and the trailing vertices

$$
(1,1), \quad(-1,1), \quad(-1,-2), \quad(4,-2), \quad(4,6), \quad \ldots
$$

in the original coordinate system [11]. After translation (as before), the two associated asymptotic spirals possess the same κ but different λs :

$$
\begin{gathered}
\lambda_{\text {lead }}=\frac{1}{2} \ln \left(\frac{2(\varphi+2)}{25}\right)-\arctan (2 \varphi-3) \kappa=-0.6909179135 \ldots \\
\lambda_{\text {trail }}=\frac{1}{2} \ln \left(\frac{11 \varphi+7}{25}\right)-\arctan (\varphi) \kappa=-0.3156737662 \ldots
\end{gathered}
$$

There exists a nice duality between this material (starting with a square and concatenating) and earlier material (starting with a Golden rectangle and partitioning). In Figure 1.2 of [10], supposing we translate the origin to the point $((1+3 \varphi) / 5,(3-\varphi) / 5)$, the spiral pictured there possesses the same κ but yet another λ :

$$
\lambda_{\text {lead }}^{\prime}=\frac{1}{2} \ln \left(\frac{2(\varphi+2)}{5}\right)-(\pi+\arctan (2 \varphi-3)) \kappa=-0.8486226074 \ldots
$$

Other variations suggest themselves.

References

[1] S. R. Finch and J. E. Wetzel, Lost in a forest, Amer. Math. Monthly 11 (2004) 645-654.
[2] S. R. Finch, Moser's worm constant, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 491-497.
[3] S. R. Finch, Beam detection constant, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 515-519.
[4] S. R. Finch and J. A. Shonder, Lost at sea, math.OC/0411518.
[5] S. R. Finch and L.-Y. Zhu, Searching for a shoreline, math.OC/0501123.
[6] S. R. Finch, The logarithmic spiral conjecture, math.OC/0501133.
[7] R. A. Baeza-Yates, J. C. Culberson and G. J. E. Rawlins, Searching in the plane, Inform. and Comput. 106 (1993) 234-252; MR1241311 (94h:90019).
[8] R. A. Baeza-Yates, J. C. Culberson and G. J. E. Rawlins, Searching with uncertainty (extended abstract), First Scandinavian Workshop on Algorithm Theory, Proc. 1988 Halmstad conf., ed. R. Karlsson and A. Lingas, Lecture Notes in Comput. Sci. 318, Springer-Verlag, 1988, pp. 176-189.
[9] R. A. Baeza-Yates, J. C. Culberson and G. J. E. Rawlins, Searching with uncertainty (full report), Research Report CS-87-68, Dept. of Computer Sci., Univ. of Waterloo, 1987.
[10] S. R. Finch, The Golden mean, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 5-11.
[11] R. Fletcher, Investigation of the growth of squares, unpublished note (2004).

[^0]: ${ }^{0}$ Copyright © 2005 by Steven R. Finch. All rights reserved.

