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Given a complex projective variety V (as defined in [1]), we wish to count the

curves in V that satisfy certain prescribed conditions. Let fC denote complex pro-

jective -dimensional space. In our first example, V = fC2, the complex projective
plane; in the second and third, V is a general hypersurface in fC of degree 2 − 3.
Call such V a cubic twofold when  = 3 and a quintic threefold when  = 4.

Our interest is in rational curves, which include all lines (degree 1), conics

(degree 2) and singular cubics (degree 3). No elliptic curves are rational. The

word “rational” here refers to the affine parametrization of the curve — a ratio of

polynomials — and the curve is of degree  if the polynomials are of degree at most

. For instance, the circle 2 + 2 = 1 is represented as

 =
1− 2

1 + 2
  =

2

1 + 2
 −∞   ∞

The lemniscate of Bernoulli has degree 4 and is represented as

 =
1− 4

1 + 62 + 4
  =

2 (1− 2)

1 + 62 + 4
 −∞   ∞

It is also defined implicitly: ¡
2 + 2

¢2
= 2 − 2

and clearly possesses a singularity (vanishing gradient) at the origin. The semi-

cubical parabola 2 = 3 and four-petal rose¡
2 + 2

¢3
= 422

possess likewise. All rational curves, smooth or not, have genus 0.
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0.1. Rational Plane Curves Passing Through Points. In the following, we

use homogeneous coordinates. Given two distinct points (1 1 1), (2 2 2) infC2, there is exactly one line passing through both because the simultaneous system
of equations

 +  +  = 0  ∈ {1 2}
has a unique solution (  ) in fC2 (up to a common scalar). It is a little harder to
prove the corresponding result for conics. Given five points (  ) in general

position, there is exactly one conic passing through all five via study of

2
 +  +  2

 +  +  + 2 = 0  ∈ {1 2 3 4 5}

in fC5. Hence we have 1 = 2 = 1, where  is defined as the number of rational

curves in fC2 of degree  passing through 3− 1 general points. The quantity 3− 1
turns out to be the critical threshold for our question: less would give an answer of

infinity, more would give an answer of zero [2].

Proving that 3 = 12 involves a heavy dose of algebraic geometry [3, 4]. Credit

for this accomplishment (in the mid-1800s) is assigned variously to Chasles [5] and

Steiner [6].

Kontsevich’s famous recursion [7, 8, 9]:

 =
X

1+2=
1≥12≥1

12

∙
21

2
2

µ
3− 4
31 − 2

¶
− 312

µ
3− 4
31 − 1

¶¸
   1

was not found until recently (in 1994). Its astonishing proof drew upon ideas not

from geometry but from mathematical physics, specifically, quantum field theory and

string theory. Other relevant recursions for curve counting are known [7, 10, 11, 12]

but these are too complicated for us to discuss here.

The asymptotics for  are [11, 13]



(3− 1)! ∼
(01380093466)

72

µ
60358078488

1
− 22352424409


+
00543137879

2
+ · · ·

¶
as  → ∞, obtained using a device due to Zagier called the “asymp trick”. No

closed-form expression for these constants is known.

0.2. Lines On a Hypersurface. The fact that exactly 27 lines lie on a cubic

twofold in fC3 is a well-known theorem [14, 15] due to Cayley & Salmon (in 1849).

Somewhat later, Schubert proved (in 1886) that exactly 2875 lines lie on a quintic

threefold in fC4. Thus we have 3 = 27 and 4 = 2875, where  is defined as the
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number of lines on a general hypersurface in fC of degree 2 − 3. Expanding on

these results, van der Waerden proved (in 1933) that

 =
1

(− 1)!
−1

−1

Ã
(1− )

2−3Y
=0

(2− 3−  + )

!¯̄̄̄
¯
=0

and Zagier [9, 13] obtained asymptotics

 ∼
r
27


(2− 3)2−72

µ
1− 9

8
− 111

6402
− 9999

256003
+ · · ·

¶
as →∞. In this case, closed-form expressions are available.

0.3. Rational Curves On a Quintic Threefold. The number of conics on a

cubic twofold is infinity. In contrast, the number of conics on a quintic threefold

is 609250. Our discussion at this point becomes highly speculative — it is merely

conjectured (by Clemens [8]) that the number  of degree  rational curves on a

quintic threefold is finite — but the following calculations are known to be valid at

least for  ≤ 9. Define 0(), 1(), 2() via power series expansion of a certain

hypergeometric function [4]:

∞X
=0


Q5

=1(5 + )Q

=1(5 + )5
= 0() + 1() + 2()

2 + · · · 

It follows that

0() =

∞X
=0


(5)!

(!)5
 1() =

∞X
=0



Ã
(5)!

(!)5

5X
=+1

1



!

(a similar expression for 2() would be good to see). We then define rational numbers

 recursively from

2() =
1

2

1()
2

0()
+
1

5

∞X
=0


0() exp

µ

1()

0()

¶


yielding

{}∞=1 =
½
2875

4876875

8

8564575000

27

15517926796875

64
 229305888887648 

¾

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Such numbers are examples of Gromov-Witten invariants, which count not only

the rational curves we desire, but also capture (unwanted) additional structure [8].

The final step is another recursion [4, 16]:

 =
X
 | 



3

yielding

{}∞=1 = {2875 609250 317206375 242467530000 229305888887625 } 

It is, again, merely conjectured (by Gopakumar & Vafa [8, 9]) that all numbers 
obtained in this manner are indeed integers. Much work lies ahead to rigorously

confirm everything written here. The asymptotics for  remain open.

0.4. Addendum. Let  be a cubic twofold and let  be the number of rational

curves on  of degree  passing through  − 1 general points on . Traves [9, 17]

gave the values

{}∞=1 = {27 27 72 216 459 936 }
and conjectured that  is always finite. A recursive formula for  (à la Kontsevich

for ?) remains open.
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