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We conclude our brief survey of minimal surfaces, started in [1, 2], with more

solutions of Plateau’s problem. The functions  [] and [] are defined exactly

as before.

0.1. Ramp Inside a Cube. Consider a polygonal wire loop with six line seg-

ments:

(0 0 0)→ (1 0 0)→ (1 1 0)→ (1 1 1)→ (0 1 1)→ (0 1 0)→ (0 0 0)

What is the minimal area for any surface spanning this fixed boundary? Equivalently,

what is the outcome of dipping the wire loop in a soap solution? Following [3, 4, 5],

we numerically solve the equation
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where the complex line integrals have endpoint  = +  satisfying

2 + 2 ≤ 1 || ≥ 

— call this planar domain Ω — and the normalization constant  satisfies
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These expressions give the top portion (  0) of the surface in Figures 1 and 2.

A reflection provides the bottom portion; a rotation would further align the surface

with our six prescribed vertices. This is a representative of the Schwarz CLP family

of minimal surfaces; a nice contrast exists with the Schwarz D surface [6]. We also

have surface area
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 − 2   = 17816507345

where ,  ,  are as in [2]. Brakke and Weber duplicated this calculation, using

Surface Evolver software [7] and conformal mapping techniques [8] respectively.
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Figure 1: First view of CLP surface
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Figure 2: Second view of CLP surface
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0.2. Saddle Inside a Cube. Consider a polygonal wire loop with eight line

segments:

(0 0 1)→ (1 0 1)→ (1 0 0)→ (1 1 0)→ (1 1 1)→ (0 1 1)→ (0 1 0)→ (0 0 0)→ (0 0 1)

Again, what is the minimal area for any surface spanning this fixed boundary? Fol-

lowing [9], we numerically solve the equation
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where the complex line integrals have endpoint  = +  satisfying

2 + 2 ≤ 1 || ≥ 

— call this planar domain Ω — and the normalization constant  satisfies
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(No call to the Re function is needed here, unlike before.) These expressions give a

quarter-wedge of the surface in Figures 3 and 4. Reflections provide the other three

quarter-wedges; a rotation would further align the surface with our eight prescribed

vertices. This is a representative of the Schwarz T family of minimal surfaces, also

known as tD surfaces (generalizing the D surface). We finally have surface area
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 − 2   = 24674098291 = 2(12337049145)

duplicating a calculation by Brakke [7]. The CLP expression for  is identical to

the T expression for ; this is true for  and  too (although less apparently so).

The latter expressions for { } give elliptic parameters {14 34} when  = −14,
consistent with our earlier work [2]. The former expressions, which come from [3],

give {−13−13} instead. Yet another set of expressions appear in [9], which we
have not attempted to use.

The presence of the constant 12337049145 , which also appeared in [1], indicates

that the T surface is related to Gergonne’s surface [9, 10]. This is surprising because

the T surface is the solution of a fixed boundary problem whereas Gergonne’s surface

solves a problem involving a partially free boundary.
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Figure 3: First view of T surface
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Figure 4: Second view of T surface
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Figure 5: Surface from Matlab help pages with boundary 

0.3. Other Problems. Consider a smooth wire loop  given parametrically by

 = cos()  = sin()  = cos()2 0 ≤   2

The projection of  into the -plane is the unit circle; its projection into the -plane

is the parabola  = 2; its projection into the -plane is the parabola  = 1 − 2.

The arclength of  is
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= 76403955780 = 4 (19100988945)  2

which incidentally is the arclength of the planar sine curve (one period). A closed-

form expression for the area 38269736664   of the minimal surface spanning 

is unknown [11, 12]. See Figure 5.
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Figure 6: Surface spanning folded circular loop

Consider instead the folded circular loop, that is, the outcome of orthogonally

mounting two unit semicircles along common diameters. For the boundary configu-

ration shown in Figure 6, we deduce that its projection in the -plane is the ellipse

2+22 = 1 and its height  is simply ||. The arclength is obviously 2; the surface
area 24822844847  (2 + )2 is again unknown [13, 14].

We wonder finally what can be said about minimal surfaces that span three disjoint

perpendicular cubic edges. This topic is believed to be more difficult than the "two

diagonals" analog (Gergonne’s surface) and relevant help would be appreciated.

0.4. Acknowledgements. Kenneth Brakke generously computed all surface ar-

eas in this essay, verifying my results for the CLP and T cases, and providing a reliable

standard (against which to compare various approaches) for other cases. Matthias

Weber demonstrated an impressive new technique to evaluate surface area for the

CLP case.
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