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Hyperbolic -space is the -dimensional real upper half-space

H = { ∈ R :   0}   = (1 2 3     )

endowed with the complete Riemannian metric  = || of constant sectional
curvature equal to −1. That is, the geodesics of H consist entirely of semicircles and

vertical lines that are orthogonal to the (− 1)-dimensional boundary R−1 × {0}.
A hyperbolic -manifold  is an -dimensional connected manifold with a

complete Riemannian metric such that every point of  has a neighborhood iso-

metric with an open subset of H [1]. Such a manifold may be either orientable or

nonorientable. It is open if it has at least one cusp, for example, a puncture in  = 2

(see Figures 1 and 2); otherwise it is closed.

From the notion of length along a geodesic proceeds the definition of volume

vol() of a hyperbolic manifold. Unlike the Euclidean case, this is an important

characteristic of  . If two finite-volume hyperbolic -manifolds are homeomorphic,

where  ≥ 3, then they must be isometric. This surprising fact (false for  = 2) is
known as the Mostow-Prasad rigidity theorem [2, 3] and is believed to be crucial for

the classification of 3-manifolds. We henceforth restrict attention only to manifolds

with finite volume; the topological invariance of vol() follows from the Gauss-

Bonnet theorem when  = 2 and via Mostow-Prasad rigidity when  ≥ 3.
Define the volume spectrum spc() to be the set of all volumes of finite-volume

hyperbolic -manifolds. It is known that [4, 5]

spc(2) = {2 :  ≥ 1}  spc(4) =

½
42

3
 :  ≥ 1

¾
but spc(3) is far more complicated. Let us restrict attention only to orientable 3-

manifolds and call the consequential subset spco(3). Let  denote the first infinite

ordinal. Gromov, Jørgensen and Thurston [6, 7, 8] proved that spco(3) is a closed,

non-discrete, well-ordered set of positive real numbers which looks like

1  2  3        +1  +2      2  2+1    

 3  3+1      2  2+1      3  3+1    

where

0Copyright c° 2004 by Steven R. Finch. All rights reserved.

1



Volumes of Hyperbolic 3-Manifolds 2

Figure 1: There exist two orientable surfaces with hyperbolic volume 2: a sphere

with 3 punctures and a torus with 1 puncture.

Figure 2: There exist three orientable surfaces with hyperbolic volume 4: a sphere

with 4 punctures, a torus with 2 punctures, and a (closed) connected sum of two tori.
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• 1 is the least volume of a closed orientable 3-manifold,

• 2 is the next smallest volume of a closed orientable 3-manifold,

•  = lim→∞  is the least volume of an (open) orientable 3-manifold with one

cusp and is the first limit point in spco(3)

• 2 = lim→∞ + is the next smallest volume of an (open) orientable 3-

manifold with one cusp and is the second limit point in spco(3)

• 2 = lim→∞  is the least volume of an (open) orientable 3-manifold with

two cusps and is the first limit point of limit points in spco(3)

The set spco(3) is said to have ordinal type 
. For convenience, we will henceforth

use the phrase “minimal manifold” to refer to a “least-volume manifold”.

Weeks [9] and Matveev & Fomenko [10] independently discovered what is conjec-

tured to be the unique minimal closed orientable 3-manifold. It has volume given by

[11, 12, 13]

1 = Im [Li2(0) + ln(|0|) ln(1− 0)] = 09427073627

where

Li2() =

∞X
=1



2
= −

Z
0

ln(1− )


 || ≤ 1

is the dilogarithm function [14] and 0 is the zero of the cubic 3 − 2 + 1 with

Im()  0. Evidence supporting this conjecture includes [15, 16, 17, 18, 19, 20, 21,

22, 23, 24, 25, 26, 27, 28, 29, 30]; the best known rigorous lower bound 1 ≥ 0324
can be strengthened to 1 ≥ 0547 [31] if Perelman’s proof of the Poincaré conjecture
is confirmed. The next smallest volume is conjectured to be 2 = 09813688288

[32]. Cao & Meyerhoff [33] proved that there exist two minimal 1-cusped orientable

3-manifolds; one of the manifolds is the complement of the figure-eight knot [34, 35]

in H3 and has volume given by

 = 2 Im
£
Li2(

3)
¤
= 2Cl2(3) = 3Cl2(23)

=
9
√
3

2

∞X
=0

2+ 1

(3+ 1)2(3+ 2)2

= 2(10149416064) = 20298832128

where Clausen’s integral is defined by

Cl2() =

∞X
=1

sin()

2
= −

Z
0

ln

µ
2 sin(



2
)

¶
 = Im

£
Li2(

)
¤

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Broadhurst [36, 37, 38] found a series that can be used as a base-3 digit-extraction

algorithm for :

 =
2
√
3
9

∞X
=0

(−1)
27

³
9

(6+1)2
− 9

(6+2)2
− 12

(6+3)2
− 3

(6+4)2
+ 1

(6+5)2

´


Define  = 2 = 10149416064 [39] to be Lobachevsky’s constant, which we

will need later. The next smallest volume of a 1-cusped orientable 3-manifold is

conjectured to be 2 = 25689706009 [40, 41]. Finally, it is conjectured that the

Whitehead link complement is a minimal 2-cusped orientable 3-manifold, which has

volume given by [42]

2 = 4Cl2(2) = 4 = 36638623767

where is Catalan’s constant [43, 44]. Much more about spco(3) still awaits discovery.

The full set spc() is well-ordered but surprisingly different from spco(3). The

minimal closed nonorientable 3-manifold appears to have volume 2 (the same as the

figure-eight complement) [32], but the minimal 1-cusped nonorientable 3-manifold

was proved by Adams [45, 46] to be what is called the Gieseking manifold, which has

volume  (only half as large). The next smallest volume of a 1-cusped nonorientable

3-manifold is conjectured to be 18319311884 It is known that 2 is also the volume

of the minimal 2-cusped nonorientable 3-manifold [47].

The complement of a knot in H3 admits a hyperbolic structure unless it is a
torus or satellite knot. Automated techniques [48] exist for computing volume and

other hyperbolic invariants of 3-manifolds, which serve to distinguish knots up to

homeomorphism [49, 50, 51, 52, 53]. The so-called “volume conjecture” relates, for

any knot, the asymptotic behavior of its colored Jones polynomial evaluated at a root

of unity to its volume [11, 54].

We now generalize. A Kleinian group is a discrete nonelementary subgroup of

the group of all orientation-preserving isometries of H3. A hyperbolic 3-orbifold
is a quotient of H3 by a Kleinian group, possibly with torsion. (An orientable 3-
manifold is a special case of a 3-orbifold for which the Kleinian group is torsion-free.)

The volume spectrum spc0o(3) of orientable 3-orbifolds is of ordinal type 
 [55] and

is quite similar to before, where

• 01 is the least volume of a closed orientable 3-orbifold,

• 0 = lim→∞ 0(−1)+ is the 
th limit point in spc0o(3), where  = 1 2 3 

The unique minimal closed orientable 3-orbifold is conjectured to have volume [56,

57, 58]

01 =
1

60

3X
=1

Im [Li2() + ln(||) ln(1− )] = 00390502856
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where 1 is the zero of the quartic 
4 − 23 +  − 1 with Im()  0, and 2, 3 are

the two distinct zeroes of the octic 8− 37 +56− 55+ 34−  + 1 satisfying both

Re()  1 and 0  Im()  1 See [16, 59, 60, 61, 62] for supporting evidence. Unlike

what occurs for orientable manifolds, however, the volume 0 of the minimal 1-cusped
orientable 3-orbifold is not equal to the limit point 0. Adams [63] and Meyerhoff
[16, 64] proved that

0 = 12 = 00845784672  0 = 3 = 03053218647

In fact [65, 66, 67], the six open orientable orbifolds of volume less than 4 have

volumes 12, 6, 6, 6, 524, and 4, whereas

02 =
7

24

∙
Cl2

µ
2

7

¶
+Cl2

µ
4

7

¶
− Cl2

µ
6

7

¶¸
= 04444574639

03 =


2
= 04579827970

See [13, 57] for an interesting unsolved problem about linear relations involving

Clausen function values. Finally [65], with regard to the full set spc0(3), the six open
nonorientable orbifolds of volume less than 8 have volumes 24, 12, 12,

12, 548, and 8. The minimal closed nonorientable 3-orbifold appears not

to be known. A remarkable connection between shortest geodesic lengths in closed

arithmetic 3-orbifolds and Lehmer’s conjecture from number theory [68] is described

in [1, 69, 70].
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